Blog details
Chapter: Pharmaceutical Drug Analysis: Pharmaceutical Chemicals: Purity and Management
Pharmaceutical Chemicals: Purity and Management
Since the Second World War a rapid development of pharmaceutical chemicals, and ultimately drugs, has made a quantum progress.
PHARMACEUTICAL CHEMICALS : PURITY AND MANAGEMENT
INTRODUCTION
Since the Second World War a rapid development of pharmaceutical chemicals, and ultimately drugs, has made a quantum progress. Medicinal chemists, pharmacologists, biochemists, analytical chemists and medical professionals have paved the way with their single goal objective to combat the sufferings of human beings. In this integrated effort the role of an analyst vis-a-vis the chemical purity of pharmaceutical substances and drugs made therefrom and finally the dosage forms that are usually available for direct patient’s usage, has become not only extremely crucial but also equally important and vital. As on date product safety has to be an integral part of all product research in pharmaceutical substances. However, the risk-beneft-ratio has got to be pegged to a bare minimum level. Therefore, it has become absolutely necessary to lay emphasis on product. safety research and development which is very crucial in all the developmental stages of a new secondary pharmaceutical product.
Inspite of all the qualified successes of synthetic drug research achieved in the last four decades to combat infectious diseases of the more than 80,000 different ailments, unfortunately only about one third can be treated with drugs, most of them only symptomatically. The discovery of better, effective and safer drugs is needed to fight the causes of dreadful diseases like cancer, acquired-immuno-deficiency-syndrome (AIDS), arthritis, cardio-vascular diseases, disorders of the central nervous system (CNS), such as : Alzheimer’s dis-ease and other vital infectious and metabolic diseases like rheumatoid arthritis.
In order to meet these challenges one needs to adopt novel approaches in pharmaceutical research. Both molecular biology and genetic engineering will be exploited duly in opening up new routes. Genetic engineering may be explored in the development of new drugs, besides, being used as a research to investigate the molecular causes of severe and dreadful diseases.
It is earnestly believed that towards the beginning of the new century (2001 AD), keeping in view the tremendous global technological competition, one is left with no other choice than to internationalize research and development of pharmaceutical drugs to achieve the common objective ‘better drugs for a better world’.
It is, however, pertinent to mention here that pharmaceutical chemicals must maintain a very high degree of chemical purity. It is quite obvious that a state of absolute purity may not be achievable, but a sincere effort must be exercised to obtain the maximum freedom from foreign substances. Bearing in mind the exorbitant operational costs to attain the ‘highest standards’ of purity, perhaps some of these processes are not economically viable. Therefore, a compromise has got to be made to strike a balance between the purity of a substance at a reasonably viable cost and at the same time its purity e.g., being fully acceptable for all pharmaceutical usages.
In short, a host of impurities in pharmaceutical chemicals do occur that may be partially responsible for toxicity, chemical interference and general instability.